Modeling the dynamic interaction of
Hebbian and homeostatic plasticity
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Hebbian plasticity homeostatic plasticity

“neurons that fire together wire together” scale synaptic strength to maintain activity
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Ocular dominance plasticity in V1:
biological mechanisms and dynamics
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® Fast NMDA dependent depression of the deprived-eye (MDO-MD3)
® Slow TNF-alpha mediated potentiation of the open-eye (MD3-MD6)

® BDNF-TrkB dependent recovery from MD (under binocular vision)

Kaneko et al. 2008a, 2008b



MD result in the monocular cortex

Fast Hebbian depression and slow homeostatic potentiation

Visual response

monocular ctx.
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Kaneko et al. 2008b



Conventional models assume that
the two kinds of plasticity cancel each other.
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How can homeostasis be powerful enough and slow at the same time?

There are two ways to impose slow homeostasis.
 \Weak homeostasis (small magnitude) tends to be overwritten by powerful depression.

e Slow averaging or delay tends to cause oscillation of synaptic weights.



Model 1: BCM rule
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Bienenstock, Cooper, and Munro, J. Neurosci. 1982.
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When the threshold change is too slow, strong oscillation happens.

Slow feedback control cannot catch up with the fast unstable Hebbian component, which generally causes oscillation.



Model 2: Stable Hebbian and multiplicative homeostatic plasticity
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Fine tuning is required — otherwise oscillatory.

This interaction predicts an alteration of visual response if Hebbian plasticity is blocked.



Hebbian and homeostatic plasticity are not
constitutively active and balanced

NMDA blockade under normal condition

intrinsic signal imaging
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These results indicate that homeostatic plasticity is not active at steady states.

NMDA blockade after MD

intrinsic signal imaging
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The two-factor model:
synaptic strength as a product of Hebbian and homeostatic variables

slow accumulation fast modulation
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synaphc
strength
PSD area X PSD AMPAR density XX AMPAR efficacy X prz?ﬁ/::\:f;lc
: neurotransmitter
# AMPARs in PSD X strength/receptor X released

Toyoizumi et al. 2014



Schematic behavior:
One possible implementation
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The two-factor model
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The two-factor model

Yy = wx
w = Hp
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Modeling multiple synapses

w; = Hp;

7o = (1= pi)[Cil = (ps — pmin) [—Cil+
rnH = f(H, (y))
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Binocular cortex, MD
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The closed eye overshot did not happen
under the TNF-alpha blockade.

C TNF-a blockade

Prediction: the closed eye does not overshoot.
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Prediction confirmed:
The closed-eye overshoot is TNF-alpha dependent.

Intrinsic signal imaging
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Summary

Hebbian learning is intrinsically unstable except when LTP or LTD is saturated. In existing models,
homeostatic plasticity typically stabilizes synapses at non-saturated values of LTP or LTD.

As homeostatic learning is made slow, oscillations of synaptic strengths may occur and ultimately the
stabilization fails.

In the proposed two-factor model, plasticity rule remains stable as homeostasis is made arbitrarily
slow. The model has plausible biophysical substrates.

The model captures the transient behaviors of OD plasticity under various experimental conditions.

Model's predictions about constitutively inactive plasticity rules and TNF-alpha-dependent previously
closed-eye overshoot were experimentally verified.

Maintaining these two processes through separable factors allows dynamic range for coding to be
maintained while allowing Hebbian mechanisms to freely learn synaptic patterns without interference.

The dynamical interaction we propose here may describe a key biological principle underlying
memory and learning in neuronal circuits.
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