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A Bridge to Al

/

What are the principles
common to both biological
and artificial information
processors?
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Clarkia Pulchella (Pink Fairies)
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n 1827, Brown studied- the fertilization
orocess in Clarkia pulchella.

He noticed a "rapid oscillatory motion" of the pollen
grains suspended in water under the microscope.
Initially, he believed that such activity was peculiar to
the male sexual cells of plants.

Pollen of plants dead for over a century showed the
same movement.

The same motion could be observed even with chips
of glass or granite or particles of smoke.
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was done by Einstein
 Einstein relation:

* The analysis of Brownian motion

/\ 677na

Ein ’\ e in ;_;1905

In 1905.

D = diffusion coefficient,
measuring the fluctuation
of the Brownian particles at
equilibrium

n = Viscosity, measuring the
response of the Brownian

particles to an external driving
force




Fluctuation-response relations
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Fluctuation Response

el (Intrinsic Behavior)  (Extrinsic Behavior)

Mean square

: Diffusion
displacement

Brownian particles
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Solids ALEEDn o Heat Capacity
Energy
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How About:Neural Systems?

i

« How are the intrinsic (without stimuli) and
extrinsic (with stimuli) properties related?

« What are the implications (esp. to neural
responses)?

» Especially in the processing of continuous
Information, e.g. orientation, head-direction,

spatial location
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Processing Continuous Information
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Continuous'Info In Monkeys
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HD Cells Predict
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Time Delays are Pervasive

N e&/
= Why is prediction useful?

Processing and transmission delays in neural systems: 50 to
100 ms

= Federer’s fastest serve speed: 135 mph
= In 100 ms, displacement = 6 m!
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Life-and=Death Issue

55 &

= Catching a prey

= Escaping from a
predator
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Negative Feedback Mechanisms

L/

e Short-term synaptic depression (STD)

» Degradation of synaptic couplings due to consumption of
neurotransmitters after prolonged firing

» Spike Frequency Adaptation (SFA)
» Desensitization of firing threshold after prolonged firing
» Inhibitory Feedback Connection from higher layers (IFL)
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Short-term

Neurotransmitter
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Tsodyks and Markram (1997) From Wikipedia
Tsodyks, Pawelzik & Markram (1998) 15
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In the Presence of Stimuli
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Mixtures of Emitters and

Population Spikes
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Mixtures of MoVing Bumps and

Sloshers
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Now focus on moving bumps,
most useful for tracking moving
stimuli.

In general, the moving bumps lag
behind external stimuli, as
shown in the flash lag effect.



: next— || Flash-Lag Effect o
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From Michael’s “Visual Phenomena & Optical lllusions”

Warning: this is a subtle effect. slow | star
slower | faster
What to do
Fixate on the cross, but watch the
moving ring. In other words: dissociate
gaze direction and attention; this takes
some practice.

What to observe

By now yvou will have noticed that the ><
blue content of the ring is occasionally
replaced by a vellow shape. Is it a full
vellow disk or a vellow crescent? If
you fixate on the cross, vou should
only see a crescent. If you follow the
ring, vou see the full disk. TLC (=ten-
der loving cooperation) required ;-) [in
other words: the effect can be some-
what subtle].
After R Mijhawan. 82004—2 M. Bach

Htt [lwww.michaelbach.de/ot/mot-flashLag/index.html
21

Nijhawan, R. Nature 370, 256-257 (1994). 21



http://www.michaelbach.de/ot/mot-flashLag/index.html
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‘

Intrinsic: Spontaneous Motion
spontaneous V

| motlon>

Firng | stronger
"ae | inhibition

:>dfavtc_)r weaker
reauction Jinnibition

@ — favor
hike
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Neurons labeled by direction

Spontaneous motion is
caused by the presence of
slow, localized, negative
feedback (to be explained)

Slow: the dynamics of

building up the bump is not
affected

Localized: strong inhibition

In active regions, weak
Inhibition in less active
regions

= increased mobility
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Neural ‘(Field Models

‘ "
External inputs

FE L

/1 Exposed layer e.qg.
neuronal current, firing rate
Hidden layer/profile e.g.
neurotransmitters, adaptive
threshold, hidden layer
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General ‘Applicability

N

o Our results (in the next few slides) are applicable to any
network structure as long as they satisfy these conditions:

» (1) The dynamical equation is the same when the
coordinates are displaced (translationally invariant).

» (2) The dynamical equation is the same when the
coordinates are reflected about the origin (inversion
symmetry).

» (3) There exists a non-zero steady-state solution of the
exposed and hidden profiles symmetric with respect to
an axis of symmetry (even parity).
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Result 1: Lagginglleading ~

position stability/instability

When the bump leads/lags the moving stimulus, anticipation time is
+/-.

Anticipation time: Tsﬁmf@
extrinsic intrinsic

Tim — tIme scale for the stimulus to build the bump, proportional to
(stimulus strength)/(bump height).

7.« = the time lag of the hidden profile behind the exposed profile

A = Instability eigenvalue of the profile separation between the
exposed and hidden profiles

In the static phase, the bump lags behind the moving stimulus; in
the moving phase, the bump leads the moving stimulus for weak
and slow stimulus.




Result 2: Anticipation time
= constant

» Anticipation time: Tant = Tstimint
¢ Anticipation time is effectively independent of velocity
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Anticipatigf™®bserved in

Neurgl Systems
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Result 3: AntiCipation time ~

intrinsic speed?

» In the moving phase,
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¢ The contours of constant anticipation time and constant

Intrinsic speed correspond to each other.
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Same for SFA and IFL
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Conclusion

» The fluctuation-response relation relates
the Intrinsic and extrinsic behaviors In
neural fields.

» Applicable to neural systems in general.

» Physical principles underlying both
artificial and biological neural information
Processors.






