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Towards the Neural Basis of Happiness

* Recent interest in Positive Psychology
e Seligman Csikszentmihalyi 1998:

We believe that a psychology of positive human functioning will arise, which achieves a

scientific understanding and effective interventions to build thriving individuals, families, and
communities.

Positive psychologists seek "to find and nurture genius and talent" and "to make normal life
more fulfilling", rather than merely treating mental illness.

Positive psychologists are concerned with four topics: (1) positive experiences, (2) enduring
psychological traits, (3) positive relationships and (4) positive institutions.



Different Kinds of Happiness

* Hedonic Happiness

* Positive emotional functioning
* Lower Pleasure

* Food

* Mouse model to study circuitry
* Higher Pleasure

e Music/collaboration with
Wang, Xiaoqin Esteem
. fM R| and pOSSibly / friendship, family, sexual intimacy \

security of body, of employment, of resources,
mouse mOdel of morality, of the family, of health, of property

* Eudaimonic Happiness Physiological /”'9’“""9.' food, water, sex,sieep, homeostasi, excretion\
* Aristotle: Virtuous activity of the soul

* Modern: conscious and life-long active exercise of intellect and
character virtues

Related to self-actualization
Recent twin study implies a genetic basis
Can be studied with MRI

morality,
creativity,
spontaneity,
problem solving,
lack of prejudice,
acceptance of facts

Calf ~ alivatinr
oelf-actualization

self-esteem,
confidence, achievement,
respect of others, respect by others




Building a neuroscience of pleasure

Pleasure

Reward
Computational

Wanting Liking Learning
e o o o e e e e e e e e o
Time
Expectation ‘ Consummation Satiety
seeking
Prediction Evaluation Prediction error



Establishing the Behavioral Platforms

Craving/wanting mem) SEEKING sy LIKINE oy  Satisfaction  =====) Learning

Recent interest
in decision making

Most People Study These



Establishing the Behavioral Platforms

Craving/wanting =) Seeking —E—; Satisfaction m) LEQAINING



Dissecting the circuits of pleasure

— —Taste Reactivity paradigm on the floating ball system

Enhancement by opioid; No enhancement with dopamine

Liking and wanting regions
[ 7] Orbitofrontal cortex
[ ] Cingulate cortex
i Insular cortex

WV

[] Hypothalamus

[ ] PAG

I”"I Nucleus accumbens

~ Ventral pallidum
"I Amygdala

® Medial OFC m Mid-anterior OFC

Liking Dus_Iukmg H_edc_’n'c_ Pleasure electrodes Pleasure causation and coding
Sweetness Bitter Brain circuits

What about dopamine?
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Facial expressions induced by taste stimuli

sugar quinine



Gape

Tongue
protrusion

Tongue
movement




VP vglut2 Neurons are aversive




Establishing the Behavioral Platforms

Craving/wanting ) Speking  se— | jking = s— Satisfaction m) LEQAINING

Motivation




Background of anatomy and functions of LH

E HIP - hippocampus o \
» 1 -leptin receptor ol ) /‘

. drinking SFO

: feeding MPOA OVLT

E aggression -

E [' -t ;

: thermoregulation =

: ®
A . =
* ARC - t I . =t
E PVN -;;‘iZSeentr:iL::%;L:snucleus : LH 24
= LH -lateral hypothalamus ; . @
. VTA —ventral tegmental area Leptin - . -—
+ NAc- nucleus accumbens Ghrelin . - - . W
* NTS —Nucleus tractus solitaris . |ep[jn glucose S
: © -ghrelin receptor Fat : : [
‘ 3 ))/ : ghrelin

\_;(.6\" E oaalionils
(Xiaoye Shan & Giles S. H. Yeo, (Scotte M.Sternson, Neuron (2013)

Rev Endocr Metab Disord (2011) 12:197 — 209)



LH regulates feeding behavior

a8 8
—— vehicle —k— vehicle
—{_— ocnexin-A 3 nmal —i— oraxin-B 3 nmol
—{}— orexin-A 30 nmol 1 —i— crexin-B 30 nmaol

Food consumption (g £ s.e.m.)

Time (h)

Takeshi Sakurai,et al,Cell, Vol. 92, 573-585, February 20, 1998




LH is involved in reward processing

Morphine conditioned

" oY a

- A . W (PP in LH 2
& 400 A Control (PP
o B Vehicle in LH
5 300 =
@
o 200
L
§ 100
$ 0
£ !TI

=100 Prederence test  Extinction  Reinstatement

Gelanda C. Harris, science, 2005,vol 437,22



Result: LH and reward seeking behavior

Photoactivation of LH neurons




Part 2 LH and reward seeking behavior

Result
Photoactivation of LH neurons induces feeding

Cheese, 30Hz, 90%



Results: LH and reward seeking behavior

Feeding is accompanied with seeking behavior in photoactivation

Standard chow, 20Hz, 90%



Results: LH and reward seeking behavior

Lower duty cycle preferably induce foraging than feeding

D: 20%

D: 80°%

D: 90°%

|




Lower duty cycles preferably induce seeking behavior

Standard chow, 20Hz, 20%



Results:LH and feeding or ingestive behavior

Background

LH is involved with the regulation of food initiation.

“areas in the hindbrain mediate the increase in consummatory (meal size) and the
hypothalamus and other forebrain sites mediate the appetitive (meal frequency)
components of orexin-induced hyperphagia.”

————— Berthoud, H.-R., and Miinzberg, H. (2011). The lateral hypothalamus as integrator of metabolic and
environmental needs: from electrical self-stimulation to opto-genetics. Physiol. Behav. 104, 29-39.



Part 3 LH and feeding or ingestive behavior

Result

Photoactivation of LH neurons

Virus Fiber




Part 3 LH and feeding or ingestive behavior

Result
Photoactivation of LH-projection axons from VP induce abnormal “eating”, and no seeking behavior

Standard chow, 20Hz, 90%



Part 3 LH and feeding or ingestive behavior

Result

Photoactivation of LH-projection axons from VP induce feeding

Standard chow, 20Hz, 90%



Cognitive processing
Decision Making
~ Reward mamory

Aversve memory
Competing behaviors

Endocrine Responses Autonomic

Autonomic Effactor Control
Metabolic State Signals ~~ [0.G. Adpoae laa, musch, Glyact

| optin receptor {e. g. Leptin Insulin Glucose

Hans-Rudi Berthoud, Heike Miinzberg,Physiology & Behavior 104 (2011) 29-39
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Brain region

Different Inputs to vglut2 and vgat neuron in LH
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Photoactivation of PAG-projection GABAergic axons from LH induce feeding

Standard chow, 20Hz, 90%



Establishing the Behavioral Platforms

Craving/wanting ) Gpeking  me— LiKiNg  s— Satisfaction =) | €QArNINg

Insular?




Drug craving paradigm—CPP

* The desire to experience the effect(s) of a previously experienced
psychoactive substance (Markou et al., 1993).

Preoccupation/anticipation
“craving”

Withdrawal/ : il
negative affect Binge/intoxication
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Damage to the Insula Disrupts Addiction to Cigarette Smoking

Nasir H. Naqvi1, David Rudrauf’2, Hanna Damasio®4, and Antoine Bechara':34~

Division of Cognitive Neuroscience, Department of Neurology, University of lowa Carver College
of Medicine, 200 Hawkins Drive, lowa City, IA 52242, USA

2| aboratory of Computational Neuroimaging, Department of Neurology, University of lowa Carver
College of Medicine, 200 Hawkins Drive, lowa City, 1A 52242, USA

3Dornsife Cognitive Neuroscience Imaging Center, SGM 501, University of Southern California,
Los Angeles, CA 90089, USA

“Brain and Creativity Institute, HNB B26, University of Southern California, Los Angeles, CA
90089, USA

Abstract

A number of brain systems have been implicated in addictive behavior, but none have yet been
shown to be necessary for maintaining the addiction to cigarette smoking. We found that smokers
with brain damage involving the insula. a region implicated in conscious urges. were more likely
than smokers with brain damage not involving the insula to undergo a disruption of smoking
addiction, characterized by the ability to quit smoking easily. immediately. without relapse, and
without persistence of the urge to smoke. This result suggests that the insula is a critical neural
substrate in the addiction to smoking.



Establishing the Behavioral Platforms

Craving/wanting ) Gpeking  me— LiKiNg  s— Satisfaction =) | €QArNINg

Serotonin?




Establishing the Behavioral Platforms

Craving/wanting ) Gpeking  me— LiKiNg  s— Satisfaction =) | €QArNINg

Happiness?
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4 Significance

A common guestion in the social science of well-being asks, “*How happy do you feel on a scale of O to
107" Responses are often related to life circumstances, including wealth. By asking people about their
feelings as they go about their lives, ongoing happiness and life events have been linked, but the
neural mechanisms underlying this relationship are unknown. To investigate it, we presented subjects
with a decision-making task involving monetary gains and losses and repeatedly asked them to report
their momentary happiness. We built a computational model in which happiness reports were
construed as an emotional reactivity to recent rewards and expectations. Using functional MRI, we
demonstrated that neural signals during task events account for changes in happiness.

- S

Abstract v

The subjective well-being or happiness of individuals is an important metric for societies. Although happiness
is influenced by life circumstances and population demographics such as wealth, we know little about how the
cumulative influence of daily life events are aggregated into subjective feelings. Using computational
modeling, we show that emotional reactivity in the form of momentary happiness in response to outcomes of a
probabilistic reward task is explained not by current task earnings, but by the combined influence of recent
reward expectations and prediction errors arising from those expectations. The robustness of this account was
evident in a large-scale replication involving 18,420 participants. Using functional MRI, we show that the very
same influences account for task-dependent striatal activity in @ manner akin to the influences underpinning
changes in happiness.

reward prediction error | dopamine | striatum | insula
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Future Happiness in Ventral Striatum
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Fig. 4.

Relationship between happiness and neural responses during preceding events. (A) Striatal activity
during task events preceding subjective state ratings correlated with later self-reported happiness (P <
0.03, small-volume corrected). (B) Neural responses in ventral striatum were explained by the same
parametric task variables as the variables that explained happiness. Emmor bars represent SEM.



Current Happiness in Insular
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Fig. 5.

Effect of the happiness question on neural activity in the right anterior insula. (A) In the right anterior
insula, neural activity at the time of the happiness guestion presentation correlated with how happy
subjects reported being (P < 0.01, small-volume corrected). (B) Parameter estimates were similar for
subjects with low or high life happiness. Emor bars represent SEM.

Even Correlated with Eudaemonic Happiness.



Comments on
Human-level control through deep
reinforcement learning

HKUST
2015/4/13



Example: Grid World

A maze-like problem
= The agent lives in a grid
= Walls block the agent’s path

Noisy movement: actions do not always go as planned

= 80% of the time, the action North takes the agent North
(if there is no wall there)

= 10% of the time, North takes the agent West; 10% East

= |If there is a wall in the direction the agent would have
been taken, the agent stays put

The agent receives rewards each time step
=  Small “living” reward each step (can be negative)
= Big rewards come at the end (good or bad)

Goal: maximize sum of rewards




Markov Decision Processes
* An MDP is defined by:

* Asetofstatess e S
* AsetofactionsacA
* A transition model T(s, a, s')
* Probability that o from s leads to s/, i.e., P(s’| s, a)
* Areward function R(s, a, s’)
 Sometimes just R(s) for current state
* A start state

* Possibly a terminal state (or absorbing state) with zero
reward for all actions

* MDPs are fully observable but probabilistic
search problems

* Some instances can be solved with expectimax search
* We'll have a new tool soon

[Demo — gridworld manual intro (L8D1)]



Policies

* |n deterministic single-agent search problem:s,
we wanted an optimal plan, or sequence of
actions, from start to a goal

e For MDPs, we want an optimal policy t*: S - A
* A policy © gives an action for each state
* An optimal policy maximizes expected utility
* An explicit policy defines a reflex agent

* Expectimax didn’t compute entire policies Optimal policy when R(s, a, s’) = -0.04
* It computed the action for a single state only for all non-terminals s
* |t doesn’t know what to do about loops



Snapshot of Demo — Gridworld V Values

Cridworld Display

VALUES AFTER 100 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0




Two Approaches

* Policy Iteration:

* Choose a policy, calculate the state values under this policy, then try to
improve the policy

* Value lteration:
 Directly calculate value of (state, action) pairs regardless of policy



Q-Learning

* Learn Q(s,a) values as you go
* Receive a sample (s,a,s’,r)
e Consider your old estimate:
* Consider your new sample estimate: Q(s,a)

* Incorporate the new estimate into a running average:
sample = R(s,a,s’) +~ max Q(s',a)

Q(s,a) — (1 0)Qs,a) + () [sample]

Q-VALUES AFTER 1000 EPISODES

[Demo: Q-learning — gridworld (L10D2)]
[Demo: Q-learning — crawler (L10D3)]



actor/critic Learning

A

states/stimuli (s)

Environment |%

rewards (r)

actions (a)

f;(

P
&

<}
‘i
a

motor
cortex

dorsal
striatum
polic
(advantages)

L]
]

-
-~ ventral
striatum |

state ,
values
-

dopamine:
prediction

dopamine signals to both motivational & motor
striatum appear, surprisingly the same

suggestion: training both values & policies



Approximate Q-Learning




Generalizing Across States

Basic Q-Learning keeps a table of all g-values

In realistic situations, we cannot possibly learn
about every single state!

®* Too many states to visit them all in training

®* Too many states to hold the g-tables in memory

Instead, we want to generalize:

= Learn about some small number of training states from
experience

= Generalize that experience to new, similar situations

= This is a fundamental idea in machine learning, and we’ll
see it over and over again




Example: Pacman

Let’s say we discover In naive g-learning, Or even this one!
through experience we know nothing
that this state is bad: about this state:

[demo — RL pacman]



Feature-Based Representations

= Solution: describe a state using a vector of
features (properties)
® Features are functions from states to real numbers
(often 0/1) that capture important properties of the
state
= Example features:
= Distance to closest ghost
= Distance to closest dot
= Number of ghosts
= 1 /(dist to dot)?
= |s Pacman in a tunnel? (0/1)

= |s it the exact state on this slide?

= Can also describe a g-state (s, a) with features (e.g.
action moves closer to food)




Example: Q-Pacman

Q(s,a) =4.0fpor(s,a) — 1.0fgsT(s,a)

D -
fpor(s, NORTH) = 0.5
a = NORTH S,
r = —500
fasr(s,NORTH) = 1.0
J/ \.
Q(s, NORTH) = +1 Q(s.) = 0

r + v max Q(s',d’) = -50040
a
difference = —501 |:> wpor ¢ 4.0+ a[-501]0.5
wasT ¢ —1.0 4+ a[-501]1.0

Q(s,a) = 3.0fpor(s,a) —3.0fgsr(s,a)

[demo — RL pacman]
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Core Idea

* Use deep neural network to evaluate the current situation

Convolution Convolution Fully connected Fully connected
hd hd hd hd

=z

ANRAANMAE (3
4 B3 EX B3 EX BN EX K3 1 « 4 -> lIE;
CEEEREERE A Ll

Q(s,a)




Key modifications to classical reinforcement learning

* Learn the mapping from input to Q values, instead of rewards or
actions!

* use a separate network for generating the targets yj in the Q-learning update.

T

Setyj = { rj+7 maxy AQ(‘/";HJ*!: U_)

Every Cstepset 0=0

* relay memory
 Store past trials
* Choose random minibatch from the relay memory pool



Average score per episode

(1]

Average action value (Q)

Successful learning on Q-values
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Success Rates for Various Games

'm

|

|

I

i

|

At human-level or above
Below human-level

mb

"wei

EI?

Bowling
o

2

fox DON
%
o Best linear learnar
X 1

I I
0 100 200 300 400 500 600 1,000 4,500%




Why Doing Poorly on Pacman?

* No notion of Need/Motivation/Emotional State

* For the same feature, the best action is opposite given whether you
have eaten the magic beans or not!!!

* Humans actually have goals!!!



Human Decision Making

* Humans spend a lot of time evaluating pros and cons when setting
the goal

* Humans are normally persistent in pursuing a goal

 Humans periodically check progress towards a goal to decide whether
to continue

* Goals can completely change your reward state values!!!

* In pacman situation, goals can be to avoid ghosts or pursue ghosts



l[dea of Motivational Saliency
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Zhang Jun et al A Neural Computational Model of Incentive Salience. Plos Comp Bio 2009


http://journals.plos.org/ploscompbiol/article/figure/image?size=medium&id=info:doi/10.1371/journal.pcbi.1000437.g001

Recent Ideas for Improvements

* Hiearchical Reinforcement Learning

* Model-based versus model-free learning



Hierarchical Reinforcement Learning

A Conventional Reinforcement Learning B Hierarchical Reinforcement Learning

SR1: Make ganache

SR2: Make egg-whits
i 74 S |

| -

Behrens et al. How to Perfect a Chocolate Soufflé and Other Important Problems. Neuron 2011



Mapping unto Brain Circuits

Lower action
executed in finer time scale

a =Control of each limb
s= Sensonmotor feedback

a'=Turn left, Tum right, Go straight...
s'=Cue A, Cue B, ...

a'=Do a task, Take a rest, ...
s"=Context A, Context B, ..

Higher action
executed in coarse time scale

Current Opinion in Neurobiology

Ito M,Doya K(2011) Multiple representations and algorithms for reinforcement learning
in the cortico-basal ganglia circuit. Curr Opin Neurobiol 21:368-373.



actor/critic Learning

A

states/stimuli (s)

Environment |%

rewards (r)

actions (a)
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dopamine signals to both motivational & motor
striatum appear, surprisingly the same

suggestion: training both values & policies



Model-Based Learning




Model-Based Learning

e Model-Based Idea:

* Learn an approximate model based on experiences
* Solve for values as if the learned model were correct

e Step 1: Learn empirical MDP model
* Count outcomes s’ for each s, a
 Normalize to give an estimate of P(s’ | s, a)
* Discover each R(s,a,s’) when we experience the transition

* Step 2: Solve the learned MDP

* For example, use value or policy iteration, as before



Pros and cons

* Pro:
* Makes efficient use of experiences

e Con:

* May not scale to large state spaces
* Learns model one state-action pair at a time (but this is fixable)
e Cannot solve MDP for very large |S|



Model-Free Learning




Example: Expected Age

Goal: Compute expected age of cs188 students

/

Known P(A)

E[A]=2>_.P(a)-a = 0.35x20+...

Without P(A), instead collect samples [a,, a,, ...

/ Unknown P(A): “Model Based” \

Why does this
work? Because
eventually you
learn the right
model.

\7 P(A) = N_/N

E[Al~ Y, P(a)-a

N

ay]

/ Unknown P(A): “Model Free” \

/

s L

Why does this
work? Because
samples appear

with the right

frequencies.

—




Evaluation

* Use random agent as baseline
e Human trained for 2h, test 20 x 5 min



Model-Based Learning




Model-Based Learning

e Model-Based Idea:

* Learn an approximate model based on experiences
* Solve for values as if the learned model were correct

e Step 1: Learn empirical MDP model
* Count outcomes s’ for each s, a
 Normalize to give an estimate of P(s’ | s, a)
* Discover each R(s,a,s’) when we experience the transition

* Step 2: Solve the learned MDP

* For example, use value or policy iteration, as before



Pros and cons

* Pro:
* Makes efficient use of experiences

e Con:

* May not scale to large state spaces
* Learns model one state-action pair at a time (but this is fixable)
e Cannot solve MDP for very large |S|



Model-Free Learning




Example: Expected Age

Goal: Compute expected age of cs188 students

/

Known P(A)

E[A]=2>_.P(a)-a = 0.35x20+...

Without P(A), instead collect samples [a,, a,, ...

/ Unknown P(A): “Model Based” \

Why does this
work? Because
eventually you
learn the right
model.

\7 P(A) = N_/N

E[Al~ Y, P(a)-a

N

ay]

/ Unknown P(A): “Model Free” \

/

s L

Why does this
work? Because
samples appear

with the right

frequencies.

—




|[dea by Peter Dayan

* Dorsomedial Striatum =2 Model Based
* Dorsolateral Striatum =2 Model Free

 dACC/VIPFC = Arbitrate between them
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